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Abstract 

 

A study of the optical limiting characteristics of capillary waveguides containing highly 

nonlinear cores is reported.  Nonlinear waveguides prove useful, both for the study of 

fundamental physical phenomena they display and for practical applications (such as optical 

limiting) they may fulfill.  Work presented here strives to use nonlinear waveguides as optical 

limiting elements, incorporating the waveguides into geometries that may integrate into modern 

optical fiber systems. 

Multi-mode and single-mode nonlinear waveguides, with core diameters ranging from 

3.2 to 200 µm, were filled with solutions of silicon naphthalocyanine (SiNc).  SiNc displays 

large absorptive and refractive index nonlinearity.  The transmission characteristics of these 

nonlinear waveguides were measured as a function of incident energy from two different pulsed, 

frequency-doubled Nd:YAG lasers (producing 7 ns and 5 ns pulses at 532 nm).  For the 

multimode waveguides, nonlinear effects are observed at input energies as low as 1.0 x 10-10 J 

and a transmission of 5% or less was observed for input energies as low as 1.0 x 10-7 J.  For the 

single-mode waveguide, a limiting response was stimulated at input pulse energies < 20 pJ. 

 Multi-mode waveguide data were compared with a three-level sequential absorption 

model, which modeled the nonlinear behavior of SiNc. 

 

 

Keywords: nonlinear, limiting, capillary waveguide, reverse-saturable absorption  
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1. Introduction 

 An optical limiting element acts just as its name implies—an optical limiter controls the 

intensity of light transmitting through it.  Such a device allows transmission of low intensity 

light, but denies transmission of high intensity light.  In fact, a perfect optical limiter would be 

transparent against low intensities of light, but would very quickly become opaque when 

irradiated with high intensity light.  Many applications demand optical limiters.1  On the 

battlefield, protecting troops’ eyes from exposure to intense laser light sources necessitates 

scope-sighting mechanisms that incorporate optical limiters operating against visible 

wavelengths.   Also, fiber optical communications technology requires optical limiting elements 

that operate in the infrared spectrum; optical limiters can protect sensitive instruments utilized in 

fiber optic networks. 

The above applications place rather challenging design parameters on an optical limiter.  

They demand nearly full transmission of low intensity light, but require limiting the transmitted 

fluence (energy density) to about 0.5µJ/cm2 in order to prevent damage to protected instruments 

or eyes.2  Furthermore, these applications require an optical limiter that can respond quickly (on 

the nanosecond timescale) in order to provide protection against short-pulsed laser light.1  

Practical electronic optical limiter designs prove incapable of responding on such a fast 

timescale.  Finally, the widespread use of optical fibers in imaging and communications has led 

to the necessity for an optical limiter that can be readily integrated into optical fiber applications. 

 Nonlinear optical materials seem the best choice for optical limiting applications.  These 

materials have optical properties—such as absorptive coefficients and indices of refraction—that 

depend strongly on the intensity of light incident upon them.  Because of these intensity 

dependent properties, many nonlinear compounds can act as optical limiters.  Some can do so 
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even against short-pulsed laser light—their optical properties change quickly enough to limit 

light within nano- or picoseconds of exposure.3 

 The Trident Project providing the basis for this report was an investigation into the 

limiting characteristics of silicon naphthalocyanine (a nonlinear optical material), when housed 

within the geometries of various optical fiber waveguides.  Silicon naphthalocyanine (SiNc) is a 

well-studied nonlinear material,4 but its limiting ability has never before been tested when 

housed within the core of an optical fiber waveguide.  Specifically, this project was an endeavor 

to test SiNc in this new geometry.  More broadly, the project sought to define the general 

characteristics of waveguides incorporating a wide variety of nonlinear materials. 

To give some background, this report discusses mechanisms by which nonlinear 

materials (such as SiNc) can limit and provides the basic groundwork for optical fiber and mode 

theory.  It gives an in-depth explanation of the investigated waveguide limiter design (which was 

devised as part of the project).  This design meets many of the prerequisites demanded by 

applications.  Furthermore, it provides the experimental setup and methodology used to study the 

design and it presents data harvested from the design.  Finally, it compares the results of 

computerized limiter simulations to the actual data. 

Presented findings shed light on a number of questions.  Firstly, how effectively can 

SiNc-filled nonlinear waveguides limit against a range of input laser pulse energies?  Secondly, 

how does limiting within the geometry of a waveguide differ from limiting in a free-space 

environment?  Finally, how does the limiting capability of a single-mode waveguide limiter 

compare to the ability of a multi-mode waveguide limiter?  To our knowledge, optical limiting 

within a single-mode waveguide has never before been seen.  The results gained from the 
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investigated waveguides were truly encouraging and the limiting effects observed in some of the 

test waveguides stand among the best limiting responses ever observed (see Figure 1).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1: Fractional transmission vs. energy input (per pulse) for a 10 µm diameter, 1.8 cm 
long, SiNc-filled waveguide optical limiter and for a simulated SiNc bulk-sample optical 
limiter.  Black data points are the limiting response of a 10 µm nonlinear SiNc waveguide.  
The black line with triangles is a simulation of the limiting response for a bulk sample of 
SiNc.  The graph indicates that a SiNc waveguide optical limiter is much more effective 
than a similar SiNc bulk-sample optical limiter. 
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2. Background 

A. Nonlinearity 

 Most familiar compounds are, for all intents and purposes, optically linear.  Take a pane 

of window glass, for instance.  A windowpane transmits the same percentage of light no matter 

how much sunshine hits it—this is the essence of a linear substance.  If it is a sunny day outside, 

the window allows a lot of light into your home.  If it is a cloudy day, the glass transmits less 

light into your home. 

 Materials used in this project are optically nonlinear.  They exhibit nonlinearity with 

respect to coefficient of absorption, index of refraction, or with respect to both of these 

properties at once.  But, what does it mean to say that a molecule’s optical properties are 

nonlinear?  To illustrate, first consider the property of light absorption. 

 1. Nonlinear Absorption 

A material’s coefficient of absorption is an empirically determined value that indicates 

how much light energy it can absorb when irradiated.  Eqn. (1) is a common expression for a 

material’s coefficient of absorption.  This particular formulation is used when the material’s 

absorptive coefficient displays intensity dependence (the coefficient of absorption for the 

material this project studied is actually fluence dependent.  Eqn (1) is given here because it 

illustrates the nonlinear concept well).  For a particular wavelength (or color) of light, α 

represents the absorption coefficient2 

α = α0 + α2I.     (1) 

Here, α0 represents the material’s linear coefficient of absorption.  The linear coefficient displays 

no dependence upon I (the intensity of light hitting the material).  Supposing that the material is 

optically linear against a range of light intensities, only α0 significantly contributes to its overall 
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coefficient of absorption.  However, if the material in question displays absorptive nonlinearity 

against a range of incident light intensities, then the term α2I—the nonlinear absorption term—is 

sufficiently large to affect the overall expression of α.  In the nonlinear case, as incident light 

intensity fluctuates, so does the material’s overall coefficient of absorption. That is, as incident 

light intensity fluctuates, so does the material’s ability to absorb light energy.  A compound 

exhibiting a large, positive α2 may prove suitable for use in the design of an optical limiter.  The 

larger the light intensity incident upon such a compound, the more energy the compound will 

absorb. 

Equation (1) is a linear equation with respect to the intensity of incident light.  However, 

the fundamental equation that governs the propagation of light in a material is the wave equation.  

This equation deals with the electric field (or magnetic field) of the incident light.  The intensity 

of an electromagnetic wave is related to the electric field by5 

,Ec
2
1  I 2

00= ε      (2) 

where c is the speed of light, ε0  is the free space permittivity constant, and E is the amplitude of 

the light wave’s electric field.  The coefficient of absorption relates to the light’s electric field 

amplitude in a truly nonlinear relationship. 

0

 2. Nonlinearity in Index of Refraction 

 Also central to this project, a compound can display nonlinearity with respect to its index 

of refraction.  A material’s index of refraction, n, is a measure of the speed of light through the 

material 

n = c/v,     (3) 

where c is the speed of light in a vacuum and v is the speed of light through the medium.  Similar 

to the expression of the absorptive coefficient, a compound’s index of refraction is given by2 
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n = n0 + n2I.     (4) 

For a substance displaying a nonlinear index of refraction, the factor n2 has a large magnitude.  

As incident light intensity fluctuates, such a compound’s index of refraction will change.  It will 

become apparent later (in discussion of total internal reflection) that certain compounds, having 

n2 << 0, can act as limiters when incorporated into the core of optical fiber waveguides. 

B. Nonlinear Mechanisms 

 1. Nonlinear Absorption Mechanisms 

 When irradiated by wavelengths in the visible spectrum and through the infrared, 

molecules use electronic transitions to absorb and re-radiate light energy.  If an energetic photon 

hits a low-energy electron (which is bound by the attractive forces of a molecule’s nuclei), the 

electron can absorb the photon’s energy and transit to an excited state (in which the electron is 

still bound by the nuclei, but in a less stable energetic state).  For simple transitions, this excited 

state will typically decay very quickly (~10-8 seconds),6 and the electron will transit down to its 

initial ground state.  Usually, the emission of a photon, equal in energy to the photon that 

stimulated the absorption process in the first place, will accompany the de-excitation and pass 

out of the molecule.  This bucket brigade model provides a simple explanation as to how light 

traverses through different media. 

However, for some electronic processes, the lifetime of a stimulated electron’s excited 

state endures so long that the excited electron dissipates its energy via mechanisms other than the 

generation of a photon (for instance, through thermal dissipation).  In this case, the electron will 

absorb the incident photon, but it will not emit a photon upon de-excitation.  In such processes, 

the transiting electron converts the incident light energy into another form of energy.  Such non-

radiating processes determine a material’s absorptive coefficient. 
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 A few types of electronic absorption processes lend themselves to creating nonlinear 

absorptive abilities against relatively low-intensity radiation, among them two-photon absorption 

(TPA) and reverse-saturable absorption (RSA).  Electronic processes can occur extremely 

quickly (sometimes within femtoseconds of exposure to light radiation), and processes like TPA 

and RSA provide the most promise for creating a limiting response against very short-pulsed 

laser light sources. 

a) Two-Photon Absorption 

 In a molecule that displays two-photon absorption, an electron cannot absorb the energy 

from simply one photon of wavelength λ.  The energy associated with one photon (wavelength 

λ) is too low to boost the electron to its excited state.  However, for these special molecules, a 

single electron can absorb two photons’ (each of wavelength λ) energies simultaneously in order 

to transit to its excited state. 

Figure 2 is a very simple molecular energy 

diagram that depicts a TPA process.  L0 is the 

of the photon).  Upon abs

to state L1, which lies abo

 

 

Figure 2: A 
schematic de

L0 

L1 
molecule’s low-energy ground state and L1 is its 

excited state.   In order for TPA to occur, two 

photons must strike the same electron residing in 

state L0 at nearly the same moment.  Each of these 

photons carries energy E, where E = hc/λ = hν (h 

is Planck’s constant, c is the speed of light, λ is 

the wavelength of the photon, ν is the frequency 

orbing the energy associated with the two photons, the electron transits 

ve L0 by an amount 2E. 

molecular energy 
picting TPA. 
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This process is highly improbable—it’s just not very likely that two photons will 

simultaneously strike an electron.  Against low incident light intensities, when relatively few 

photons strike the TPA molecule per unit time, TPA events remain virtually nonexistent.  

However, under more intense radiation, the raw increase in the number of bombarding photons 

per unit time increases the likelihood of TPA.  Higher incident intensities provoke more and 

more TPA events, markedly increasing the molecule’s ability to absorb energy.  TPA is a 

nonlinear, intensity dependent effect. 

b) Reverse-Saturable Absorption 

 TPA has a close relative in the phenomenon called reverse-saturable absorption (RSA).  

While TPA causes one electron to simultaneously absorb the energy of two photons, RSA 

involves a single electron making two separate absorptions.  Consider a molecule whose electron 

energy states are described by the simplified energy schematic of Figure 3.  For an electron 

residing in level L0, the ground-state absorption cross section, σg, indicates the probability that it 

will excite to level L1 and absorb a photon’s energy.  Likewise, for an electron in energy level L1, 

the excited-state absorption cross section, σe, indicates the probability that the electron will excite 

to level L2 and absorb a photon’s energy.  

In an RSA-prone molecule, σe is much 

greater than σg.  That is, once level L1 is 

significantly populated, it is more likely 

for an electron to transit from L1 to L2, 

than from L0 to L1. 

Figure 3: An RSA molecule’s energy diagram. 

σe 

σg 

L2 

L1 

L0 

For an RSA molecule facing 

relatively low-intensity radiation, state L1 
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will not gain a significant population of electrons.  The molecule’s absorptive ability will be 

determined by electron transitions between L0 and L1.  However, as the intensity of the incident 

light increases, a significant number of electrons will populate L1, and electron excitations to L2 

will become possible.  Because σe > σg, once electrons in L1 begin exciting to L2, the reverse-

saturable absorber’s ability to absorb light energy increases.  This is in contrast to the more 

common saturable absorber, in which σg < σe.  In the saturable absorber, the saturation decreases 

as the intensity becomes greater since the electrons in the excited state (L1) are less prone to 

absorb additional photons.  

2. Relating Cross Section and Absorptive Coefficient for an RSA Solution 

Understanding the mathematical expressions relating a molecule’s absorption cross 

sections to its coinciding absorptive coefficient proves important when trying to model the 

behavior of reverse-saturable absorbers.  To this point, absorption cross sections and absorptive 

coefficients have been discussed as separate entities, but they directly relate to one another. 

The nonlinear material investigated in this project, silicon naphthalocyanine (SiNc), is a 

reverse-saturable absorber.  However, the simple expression for a coefficient of absorption 

outlined by eqn. (1) cannot apply to a solution of SiNc molecules.  Eqn. (1) applies to intensity 

dependent reverse-saturable absorption.  In the experiments presented later, SiNc responds to 

input pulses of light in a fluence dependent manner (that is, SiNc’s nonlinear response depends 

upon the total amount of energy per area [J/m2] an incident pulse delivers, rather than on the 

intensity [W/m2] the incident pulse exhibits).  Thus, the expression soon given (in eqn. (7)) for 

the coefficient of absorption appears different than the expression in eqn. (1). 

SiNc molecules approximately conform to a three-level RSA model (like the one in 

Figure 3).  When light irradiates a solution of SiNc, some fraction of the dissolved SiNc 
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molecules absorb light and become excited; in these excited molecules, state L1 gains a 

significant electron population.  The rest of the SiNc molecules in solution remain unexcited; 

state L1 remains unpopulated for these ground-state molecules.  These two groups of SiNc 

molecules, the ground-state group and the excited group, each contribute to the overall 

absorptive ability of the solution differently (because σe > σg).  In determining a solution’s 

coefficient of absorption, the absorptive affect created by each of these groups must be treated 

separately. 

The ground-state coefficient of absorption, αg, derives from the ground-state group of 

SiNc molecules through the relationship3 

  α g =  (σg)(C1)(NA)(
mL 1000

L 1 ).   (5) 

Here, C1 stands for the molar concentration [mol/L] of the unexcited RSA molecules in solution.  

NA is Avogadro’s Number. 

 Likewise, α e, the RSA solution’s excited-state absorptive coefficient, derives from the 

excited-state group of SiNc molecules by3 

   α e = (σe)(C2)(NA)( 
mL 1000

L 1 ).   (6) 

C2 represents the molar concentration [mol/L] of excited RSA molecules in solution. 

 For the RSA solution, then, the overall absorptive coefficient, α, is a conglomeration of 

the ground-state and excited-state coefficients, where 

    α =  α g + α e.     (7) 

As light energy incident upon a solution of SiNc molecules increases, the proportion of excited-

state to unexcited-state molecules will shift in favor of the excited molecules.  Thus, α e will 

increasingly dominate over αg in the expression of α.  It is this shifting effect that causes 
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nonlinearity in SiNc’s absorptive ability.  There is a limit to SiNc’s nonlinearity, though.    

Beyond a certain threshold of incident fluence, virtually all of the SiNc molecules in solution 

will enter the excited state.  Thus, only the excited-state cross section will contribute to the 

solution’s absorptive ability.  Beyond this threshold fluence, the solution will again become 

optically linear (with respect to absorption) and α ~ α e. 

 3. Nonlinear Mechanisms Affecting Refractive Index 

 The mechanisms producing the largest nonlinear changes in a compound’s index of 

refraction are typically thermal in nature.  In an irradiated compound, thermal changes arise due 

to various non-radiating intra- and intermolecular electron relaxations that follow linear and 

nonlinear photon absorptions.  In short, under highly intense light, frequent photon absorptions 

produce local heating within an irradiated material.  As the temperature of the irradiated system 

increases, the material will expand and decrease in density.  The index of refraction of a 

substance depends on its density and, for most materials, a decrease in density leads to a decrease 

in index of refraction.4  Therefore, by definition, most nonlinear absorbers also demonstrate 

nonlinearity in index of refraction. 

C. Circular Optical Waveguide Theory 

 1. Why the Optical Waveguide? 

 In most previous investigations of nonlinear optical limiters, a nonlinear sample’s 

limiting response is stimulated when light, focused by a lens, propagates into a freestanding 

sample of the material.3  The rationale behind this setup makes sense.  The lens, by focusing 

incident light, increases the intensity of the light to a maximum at its focal plane.  For the 

irradiated sample, this increase in incident light intensity translates into a more marked nonlinear 

limiting response (remember, a nonlinear response depends upon light intensity).  However, the 
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lens can only keep light tightly focused over a small region about its focal point—the Rayleigh 

Range (see Figure 4).7  For a sample that requires very intense light to stimulate a nonlinear 

response, effective optical limitin

Given the limiting abilities of ma

satisfy applications is difficult to
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report take advantage of this light-trapping property.  As such, an understanding of fundamental 

optical waveguide theory is crucial to an understanding of the designs presented. 

2. Total Internal Reflection  

Fiber optical waveguides operate on 

the classically defined principle of total 

internal reflection, an interesting result of 

Snell’s Law,8  

nisin θi = ntsin θt. (8) 

As shown in Figure 5, light rays traveling 

across an interface from a medium of low 

refractive index, ni, to a medium of high 

index, nt, will bend toward the normal 

vector describing the interface’s plane of 

tangency.  Conversely, when light travels 

across an interface from a high refractive index to a lower refractive index, the incident light rays 

bend away from the normal at the interface.  In the latter case, when light rays strike the interface 

at incident angles larger that a certain critical angle, they bend so sharply away from the normal 

that they reflect rather than refract.  Such rays are trapped in the medium of high refractive 

index.  The critical angle, θc, is derived from Snell’s Law: θc = sin-1(nt/ni).8  This light-trapping 

phenomenon has been dubbed total internal reflection (TIR). 

Figure 5: The transmission and reflection of 
an incident ray according to Snell’s Law. 

ni < nt 

nt 

ni 

θi = θr > θt 

 To take advantage of TIR, step-index optical fibers (waveguides) consist of a high-

refractive index core and a surrounding low-refractive index cladding.  When light passes into 

one end of the fiber with the proper orientation (i.e. an incident ray hits the core-cladding 
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interface at an angle greater than the critical angle—see Figure 6), the ray is guided within the 

boundaries of the fiber core.  The fiber will only support TIR for rays entering the end of the core 

at an angle less than θ0,max, given by:9 

 

Figure 6: The trapping of a light ray within the core of a waveguide—total internal reflection. 

n2  cladding 

θ0,max 
n1 > n2 n1  core 

sin θ0, max = (n1
2 – n2

2)½ .      (9) 

If a waveguide’s core refractive index ever decreases below its cladding refractive index (this 

can occur within nonlinear waveguides), the waveguide will no longer guide light within its core. 

While most commercially available step-index optical fibers have solid cores, the core 

need not be solid.  Nonlinear waveguides discussed in this report consist of a small glass tube 

(called a capillary) filled with a liquid solution of nonlinear molecules.  For such a waveguide, 

the high-refractive index nonlinear solution forms the waveguide’s core and the glass capillary 

acts as the waveguide’s cladding.  The nonlinear response of a waveguide’s liquid core can be 

deduced by testing its transmission efficiency against a range of different input light intensities. 
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3. Mode Theory for Circular Waveguides 

a) What is a Mode? 

The simple ray model presented above cannot completely describe the propagation of 

light guided within an optical fiber’s core.  Light guided within a waveguide’s core must satisfy 

Maxwell’s Equations and the electric and magnetic boundary conditions present at the 

waveguide’s core-cladding interface.  Having solved Maxwell’s Equations given these 

conditions, it becomes evident that the electric and magnetic field distributions guiding along an 

optical fiber can be represented by a superposed set of bound modes. In a sense, each mode 

belonging to this set is an allowable pathway on which light can travel through the fiber.   

Figure 7: Some low 
order modes within a 
2-D waveguide.  
While the text refers to 
3-D circular 
waveguides, this 
picture helps present 
the concept of what a 
mode is.  Each curve 
represents the electric 
field distribution for a 
different mode.  The 
left-hand curve is the 
lowest order mode (the 
zero-order mode).  A 
waveguide that only 
allows propagation of 
the lowest order mode 
is called a single-mode 
waveguide. 

Each guided mode propagates with a distinct electromagnetic field distribution (see 

Figure 7—these distributions can be described by Bessel Functions) that forms a standing wave 

pattern, which begins at the core’s transmission axis (the z-axis) and extends radially outward. 



    
          
                                                                                 20                         

Depending upon a fiber’s characteristics, it may permit few or many modes (a single-

mode energy distribution pattern is depicted in Figure 8).  Light energy focused into a fiber’s 

core will distribute across the fiber’s modal field and each mode will carry a fraction of the 

traversing light energy.  In addition, as the light traverses, the modes may share energy amongst 

one another—the fraction of light energy each mode carries may change as the light propagates.  

Energy sharing among modes can drastically alter the cross-sectional energy distribution within a 

fiber’s core as light propagates through it.  This property of energy distribution and redistribution 

among a fiber’s modes has implications for optical limiting within a fiber’s core.  These 

implications will be discussed in more depth later in the presentation of the single-mode limiter 

apparatus. 

 Figure 8: the energy distribution associated with the 0-
order mode, the simplest of modes.  This cross sectional 
image comes from the core of a fiber waveguide (the core 
is 2 µm in diameter).  Yellow denotes the area of highest 
energy concentration and blue denotes the area of lowest 
concentration.  The energy distribution is roughly 
circularly symmetric and Gaussian in the radial direction.  
A single-mode fiber can only allow this energy 
distribution to propagate. 

 

 

 

 

b) Finding Allowed Modes 

For monochromatic light of radian frequency w, a mode traveling in the positive z-

direction (along a fiber’s transmission axis) has a time and z dependence given by9 

ei(wt – βz).      (10) 

Here, β is the z-component of the wave propagation vector.  A waveguide supports guided 

modes when,9 

n2k < β < n1k,     (11) 
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where n1 and n2 are the refractive indices of the core and cladding, respectively. Also, k is the 

free-space propagation constant given by k = 2π/λ, where λ is the wavelength of the guided light.  

Each possible mode corresponds to a different value of β; if a mode corresponds to a β outside 

the bounds of eqn. (11), that mode will leak out of the core and its transmission will be lost.  

Thus, relationship (11) is known as the cutoff condition.  Because of the boundary conditions at 

the core-cladding interface, β can assume only certain discrete values within the range prescribed 

by eqn. (11). 

Because each mode corresponds to a separate value of β, then each guided mode 

experiences a slightly different index of refraction within the core, called neff.  Therefore, we can 

express the propagation constant of each guided mode as β = neffk.  In this relationship, neff takes 

on discrete values between n1 and n2. 

 Consider Maxwell’s Equations for a linear, isotropic dielectric material having no 

currents or free charges (such as the materials in a fiber): 

∇ × E = -∂B/∂t    (12) 

∇ × H = ∂D/∂t     (13) 

∇ • D = 0     (14) 

∇ • B = 0.     (15) 

Here E represents the electric field vector of propagating light, B the magnetic field vector, and 

D = εE and B = µH (ε is the medium’s dielectric constant, µ is its permeability).9 

 Relating these four equations to one another, the standard differential wave equations for 

light’s electric and magnetic fields are 

∇
2E = εµ(∂2E/∂t2)    (16) 

∇
2H = εµ(∂2H/∂t2).    (17) 
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Given the cylindrical geometry of a fiber, to describe light traveling through a fiber, it becomes 

most convenient to express electromagnetic waves in terms of cylindrical coordinates.  If the 

waves, electric and magnetic, are to propagate along the z-axis of a fiber, they will take the form 

E = E0(r,φ)ei(wt – βz)    (18) 

H = H0(r,φ)ei(wt – βz),    (19) 

which are harmonic in time t and coordinate z.  Here, r is the distance in the radial direction 

(measured from the fiber’s z-axis) and ϕ is the azimuthal angle about the fiber axis.  Each 

mode’s β is determined by the boundary conditions on the electromagnetic fields at the core-

cladding interface.  Plugging (18) and (19) into (16) and (17), and simplifying, the z-components 

of the electric and magnetic fields satisfy 

∂
2Ez/∂r2 + (1/r)( ∂Ez/∂r) + (1/r2)( ∂2Ez/∂φ

2) + q2Ez  = 0  (20) 

∂
2Hz/∂r2 + (1/r)( ∂Hz/∂r) + (1/r2)( ∂2Hz/∂φ

2) + q2Hz  = 0, (21) 

where q2
  = k2 - β2.  Furthermore, the r- and φ- components of the electric and magnetic fields are 

related to derivatives of the z-components of the fields by 

  Er = -(i/q2)(
φ

µ
β

∂
∂

+
∂
∂ zz HE

r
w

r
)    (22) 

  E  = -(i/qφ
2)(

r
w

r ∂
∂

−
∂
∂ zz HE

µ
φ

β )    (23) 

  Hr = (-i/q2)(
φ

ε
β

∂
∂

−
∂
∂ zz EH

r
w

r
)    (24) 

  H = -(i/qφ
2)(

r
w

r ∂
∂

+
∂
∂ zz EH

ε
φ

β )    (25) 

Using separation of variables, the solution sets for eqns. (20) and (21) can be obtained.  

Assuming that the z-component of the electric field can be written as the product of several 
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functions, each function only depending on a single variable, then the electric (magnetic) field 

solutions take the general form 

Ez  = AF1(r)F2(φ)F3(z)F4(t),   (26) 

where 

F3(z)F4(t) = ei(wt – βz),    (27) 

since the wave is harmonic and propagates in the z-direction.9  The circular symmetry of the 

waveguides forces the electric field to have the same value when the azimuthal angle increases 

by an integer multiple of 2π.  Therefore, the function is periodic in the azimuthal direction, given 

by 

F2(φ) = eiνφ,      (28) 

where ν takes on integer values.  Substituting (28), (27), and (26) into (20), then 

∂
2 F1/∂r2 + (1/r)( ∂ F1/∂r) + (q2 – v2/r2)F1 = 0.  (29) 

Equation (29) is the form for a common set of differential equations whose solutions are Bessel 

functions.  A similar result can be derived using Hz.9  Bessel functions dictate the nature of a 

mode’s electric and magnetic fields in an optical fiber.  Each azimuthal parameter, ν, 

corresponds to a Bessel function of order ν.  Figures 9 and 10 contain plots of several Bessel 

functions of the first kind (Jν) and Bessel functions of the second kind (Kν). 

Typically, the core of a fiber is very small compared to the cladding.  Therefore, the 

cladding radius is assumed to be infinite (this is a valid approximation when treating fibers 

whose cladding thickness is >> λ).  Within the core, where r < a (a = the radius of the core), the 

electric and magnetic fields must remain finite.  Outside the core, as r → ∞, the solutions must 
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approach zero.  To satisfy these stipulations, the solutions within the core are Bessel functions of 

the first kind of order v (Figure 9) and are expressed as 

Ez(r < a) = AJ
v
(ur)eivφei(wt – βz)   (30) 

Hz(r < a) = BJ
v
(ur)eivφei(wt – βz),   (31) 

where A and B are constants and  

u2 = k1
2 - β2,                               (32) 

where k1 equals 2πn1/λ. 
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Figure 9: Some low-order Bessel Functions of the first kind.  These functions can describe 
the electric and magnetic field distributions within the core of an optical fiber. A) J0.  B) J1.  
C) J2.  D) J3. 

 

 

 Outside the core, the solutions to the cylindrical wave equations yield modified Bessel 

functions of the second kind of order v (Figure 10) and are expressed as9 

Ez(r > a) = CK
v
(wr)eivφei(wt –βz)   (33) 
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Hz(r > a) = DK
v
(wr)eivφei(wt – βz),  (34) 

where C and D are constants and 

    w2 = β2 – k2
2,                                    (35) 

where k2 = 2πn2/λ. 
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Figure 10:  Some low-order Bessel Functions of the second kind.  These functions can 
describe the electric and magnetic field distributions in the cladding of an optical  fiber.  A) 
K0.  B) K1.  C) K2.  D) K3. 

 

 

 

 The core-cladding boundary conditions require that the tangential components of the 

electric field (i.e. Ez and Eφ) and the tangential components of the magnetic field (i.e. Hz and Hφ) 

must be continuous across the core-cladding interface.  The coefficients A, B, C and D can be 

found by applying these conditions.  Solutions for these coefficients only exist for certain, 

discrete values of β.  Thus, the application of these boundary conditions provides a means for 
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finding the propagation constant of each mode as well as the number of allowed modes within 

the core (one for each β). 

The total number of allowed modes in a waveguide is reduced in the case that the 

difference in refractive index between the core and the cladding is very small.  This is a good 

approximation in the experiments later discussed, where the index difference is less than 1%.  

This smaller set of allowed modes is called the linearly polarized (LP) modes.   

 In the linearly polarized case, the application of the boundary conditions at the core-

cladding interface leads to the following transcendental equation that must be solved in order to 

find the propagation constants for the modes: 

uJ
j-1

(ua)/J
j
(ua) = -wK

j-1
(wa)/K

j-1
(wa),  (36) 

where j = v –1.  The number of roots to eqn. (36) equals the number of allowed modes. 

The number of allowed modes also depends upon the parameter 

V = (2πa/λ)(n1
2 - n2

2)
½

,   (37) 

often called the V-number.  In general, the number of allowed modes increases as the V-number 

gets larger.  Thus, waveguides with large core sizes with respect to the wavelength of the light 

used, or waveguides with large differences in refractive index between the core and cladding, 

tend to support more modes. 

If more than one mode is allowed to propagate, the waveguide is called multi-mode.  

However, if the physical characteristics of the waveguide and the wavelength of the incident 

light permit, the waveguide will only support one mode.  In that case, the waveguide is called 

single-mode.  For single-mode operation, there must be only one root to eqn. (36) and V must be 

≤ 2.405. 



    
          
                                                                                 27                         

When constructing a nonlinear capillary limiter, single-mode operation provides a 

number of benefits.  Single-mode waveguides tend to have very small core diameters.  Within 

such a small geometry, light focused into the core remains extremely intense, inducing a 

nonlinear response against very low input energies.  Also, most commercial fiber systems utilize 

single-mode optical fibers.  Thus, single-mode limiters are more easily integrated into these 

systems. 

c) Computerized Mode Finding 

For analysis of waveguides discussed in this project, a MathCAD computer program was 

used to find the number of roots to eqn. (36).  The program plots each side of the transcendental 

eqn. (36). It also computes the V-number associated with input fiber characteristics.  This 

information indicates the number of modes a fiber will support and each mode’s corresponding 

effective refractive index.   

Consider a waveguide having the characteristics listed in Table 1. 

 

Table 1
Core Radius 1.5 µm 
Operating Wavelength 532 nm 
Core Index (n1) 1.486 
Cladding Index (n2) 1.482 
 
In Figure 11, the MathCAD program plots each side of eqn. (36) using the parameters from 

Table 1.  The program also returns the V-number associated with the given characteristics: 

V = 1.93 

In Figure 11, the solid curve represents the plot of the left side of eqn. (36) versus neff, where neff 

ranges between n1 and n2.  The dotted curve is the plot of the right side of eqn. (36) versus the 

same range.  Because the two lines only cross once (equivalent: eqn. (36) has only one root) and  
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Figure 11: The plot of the left and right sides of eqn. (36).  The graph indicates that, for 
the parameters given in Table 1, eqn. (36) exhibits only one root.  The solid curve 
represents the left side of eqn. (36), the dotted curve is the right side of eqn. (36). 

 

 

since the V-parameter remains less than 2.405, the fiber allows only one mode to propagate.  As 

the graph indicates, this lone mode displays an effective index ~ 1.4837.  
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3.  The Multi-Mode Limiting Apparatus 

 Designing a limiting apparatus for experimental purposes proved a difficult and time 

consuming process.  The device had to be easily reproducible, its reproductions had to yield 

consistent results, it had to give easy access for external optics and it had to be inexpensive.  

Through its evolution, the design took many forms, but in the end, the simplest device proved 

best. 

 The main component of the 

limiter design is, as mentioned 

before, the capillary tube.  

Fabricated by stretching fused silica, 

the capillary material is purchased 

by the meter.  The capillaries used in 

the design exhibit internal diameters 

(ID) ranging from ~3 to ~200 microns.  In all cases, capillary outer diameters (OD) were much 

larger than the core inner diameters.  After cleaving the bulk material into 1.8 cm segments (1.8 

cm is the smallest segment the cleaving machine can produce), the capillaries were filled with 

solutions (linear or nonlinear) by capillary action.  Given the viscosity of the tested solutions, the 

capillaries could take quite a while to fill.  To illustrate, 10-micron (ID) capillaries typically 

filled within two hours.  The more slender 3-micron (ID) capillaries sometimes required 24 hours 

to completely fill.   This filling method proved quite adequate, although on infrequent occasions 

bubbles formed within the capillaries and rendered them useless. 

Figure 12: A graphic depiction of the optical 
waveguide limiter design devised for this project. 

 The construction of the apparatus is quite simple.  Two thin optical flats (microscope 

slide covers) stand on end, parallel to one another (see Figure 12).  The flats are glued to a stable 
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platform in this conformation.  Held in place between the parallel flats, running perpendicular to 

the face of each flat, a capillary is suspended.  Each end of the capillary waveguide butts against 

one of the optical flats. 

During experiments, laser light (focused by a microscope objective) funnels through the 

input optical flat into the core of the suspended waveguide.  Propagating through the nonlinear 

core, the input light stimulates a limiting response.  At the output of the waveguide, a second 

objective re-collimates the light into a coherent beam for observation. 
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4.  The Investigated Nonlinear Material 

A. Silicon Naphthalocyanine 

 Nonlinear capillary waveguides discussed in this report incorporate the nonlinear 

substance called bis[tri-(n-hexyl)siloxy] silicon naphthalocyanine (SiNc).4  SiNc, a solid at room 

temperature, acts as a reverse-saturable absorber when irradiated with 532 nm-wavelength light.  

SiNc’s properties actually make it an RSA molecule over a broad portion of the visible spectrum, 

and it displays limiting characteristics against wavelengths from ~ 400 nm to ~ 600 nm.4  Thus, 

SiNc would be an adequate nonlinear molecule for optical limiting applications that require 

limiting in the visible spectrum.  The experiments presented in this report irradiated SiNc with 

only 532 nm-wavelength (green) light. 

 In actuality, SiNc’s molecular energy scheme cannot be fully described by a three-level 

model (like the schematic presented in Figure 3).  Figure 13 shows SiNc’s actual molecular  

 
Figure 13: SiNc’s energy 
schematic.  SiNc displays 
a nonlinear reverse-
saturable character 
because σs and σt are > σg.  
SiNc’s ability to limit very 
short light pulses is 
affected by the lifetime of 
the s1-to- t1 decay.  For 
incident pulses shorter 
than 4.5 ns, SiNc’s 
absorption ability 
decreases (the s1-to- s2 
transition becomes more 
likely than the t1–to- t2). 

σg 

 

 

 σs σt 
 

 

 

 

 

 

energy scheme, which includes five levels.  If no outside energy source stimulates a SiNc 

molecule, it remains in a low energy state (its ground state, l0, holds the vast majority of the 
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molecule’s associated electrons).  Under photon irradiation, electrons in the ground state interact 

with bombarding photons and transit to the first excited singlet state (s1).  From s1, electrons can 

take a number of pathways: if the fluence of an incident pulse of photons is insufficient to 

stimulate further excitations, the excited electrons will de-excite back down to l0 (perhaps via 

state t1); if the incident pulse fluence is large enough, electrons can excite again to the second 

excited singlet state (s2); or, they can drop to the first excited triplet state (t1) and then excite to 

the second excited triplet state (t2).  In the case of an intense incident pulse, observations have 

established the fraction of electrons that transit from s1 to s2 versus the fraction of electrons that 

transit from s1 to t1 and then on to t2.4  For intense pulses longer than the 4.5 ns lifetime of the s1-

to-t1 transition, experiments have shown that ~ 75% of electrons in s1 remain in s1 to transit to s2, 

while 25% of the electrons in s1 decay to t1 and become vulnerable to further excitation to t2. 

 It is the possibility of the t1-to-t2 and s1–to-s2 transitions that make SiNc a reverse-

saturable absorber.  These transitions exhibit absorption cross-sections (σt and σs, respectively) 

much greater than the ground state absorption cross-section (σg).  In SiNc, uncertain 

measurements (measured using an 8 ns pulse) place σt somewhere in the range of 46 x 10-18 cm2 

to 115 x 10-18 cm2, while σs is more exactly measured at ~ 33.4 x 10-18 cm2.4  σg takes the 

relatively low value of 2.3 x 10-18 cm2 (no matter the incident pulse length).  That is, an electron 

transition from t1 to t2 is about 50 times more likely, and an electron transition from s1 to s2 is 

about 14 times more likely, to absorb a photon’s energy than an electron transition from l0 to s1.   

Once incident light intensity becomes high enough to significantly populate state s1 and force 

transitions to s2 and t2, SiNc’s absorbing ability greatly increases.   
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B. The Reduced Three-Level Model 

 For the sake of ease in building a computer model of SiNc’s nonlinear response to light, 

the molecule’s complex energy level structure is reduced to an approximately equivalent three-

level model (see Figure 14).  This approximation proves accurate for the purposes of this project 

and makes computer simulations much more computationally efficient.  The three-level model 

condenses the original states s1 and t1 into one state (l1), and it condenses states s2 and t2 into a 

separate higher state (l2). 

In modeling the results of this project, an approximate value for the effective excited 

absorption cross-section (σeff) can easily be calculated (σg remains 2.3 x 10-18 cm2).  Using the 

relationship 

    σeff = (σsfs + σtft),   (38) 

Figure 14: SiNc’s reduced three-level schematic. 

where fs (= 0.75, measured using an 8 

ns, 532 nm-wavelength light pulse) 

represents the fraction of electrons 

making the s1–to-s2 excited transition 

and ft (= 0.25) represents the fraction of 

electrons making the t1–to-t2 transition 

(see Figure 13).4  The pulses used for 

investigation in this project lasted either 

~ 7 ns or ~ 5 ns.  Because the fs and ft 

were measured using an 8 ns pulse, another factor must be taken into account when calculating 

σeff.  In the case of the 7 ns pulse, the result harvested from eqn. (38) must be multiplied by (7/8).  

For the 5 ns pulse, the result must be multiplied by (5/8).  In the end, 

σeff 

σg 
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31.9 x 10-18 cm2 < σeff < 47.1 x 10-18 cm2   7 ns pulse 

or 

22.8 x 10-18 cm2 < σeff < 33.6 x 10-18 cm2.   5 ns pulse 

For the reduced three-level model, the ratio σeff/σg determines SiNc’s nonlinear ability. 

 Beyond a certain threshold of incident fluence, both the three- and five-level models 

become inaccurate.  If the incident pulse is intense enough, it will fully saturate SiNc’s excited 

levels.  In this case, once the upper levels totally saturate, SiNc will begin to act like a linear 

absorber again because electrons will only be able to transit between the molecule’s upper levels 

(there will be no net de-excitations to l0).  Thus, the ratio σeff/σg becomes irrelevant, and only σeff 

contributes to the molecule’s absorptive coefficient. 

 Previous experiments conducted to test SiNc’s limiting ability have shown that, in a free-

space environment (not within the core of an optical waveguide), SiNc’s threshold fluence, 

called the saturation fluence, can be determined using the relationship4 

    
tg

h
Φ

=
σ

ν
satF .    (39) 

Here, Fsat stands for the saturation fluence, h is Planck’s constant, ν is the frequency of incident 

light, σg is the ground-state absorption cross section, and Φt is the triplet excited state’s quantum 

yield.  Φt is an index that indicates the how easily the first triplet excited state is populated—it 

relates directly to the fraction of electrons that populate level t1.  Using (39), against 532 nm-

wavelength light, SiNc’s saturation fluence is ~ .464 J/cm2.  This result is valid for a limiting 

response provoked in a free-space environment and can be used for comparison to saturation 

fluences achievable within nonlinear optical waveguide geometries. 

 SiNc is also an excellent limiter in terms of its fast response time.  In previous 

experiments, SiNc successfully limited 8 ns laser pulses (532 nm wavelength).4  SiNc can 
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certainly limit even shorter pulses (this project observed a limiting response against 4.9 ns pulses 

of 532 nm light).  Because the lifetime of SiNc’s first excited state is long (about 5 ns4), it is 

necessary to treat irradiating light pulses in terms of fluence [energy/area] rather than in terms of 

intensity [energy/(area*time)].  This is because the absorption experienced by each part of the 

pulse depends on the total amount of energy already absorbed by the material from previous 

parts of the same pulse.  The increase in absorption is a cumulative (or integrated) effect.  For the 

rest of this report, the energy associated with a pulse will be given in terms of fluence, which 

indicates the amount of energy an entire light pulse delivers per unit area. 
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5. The Light Sources 

 Two different frequency-doubled, Q-switched Nd:YAG lasers were used to investigate 

nonlinear SiNc waveguides.  The laser used at the Naval Research Laboratory (Washington, 

D.C.) creates ~7 ns pulses (full-width-half-max), while the laser used at the US Naval Academy 

creates ~ 4.9 ns pulses (full-width-half-max).  Both lasers operate with a pulse repetition 

frequency of 10 Hz.  Both lasers produce 532 nm-wavelength light.  The energy-per-pulse output 

of each laser can be varied. 

Both lasers create pulses whose temporal energy distributions are nearly Gaussian in 

space and time.  This simple distribution provides for ease in modeling the interaction of a pulse 

with nonlinear material (see Figure 15). 

 

Figure 15: Temporal energy distribution of the Nd:YAG laser used at the US Naval 
Academy.  The thick line represents the actual distribution.  The dotted line represents a 
perfect Gaussian distribution.  The pulse lasts ~ 5 ns (at full-width-half-max). 
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6.  Experimental Setup 

 The experimental setup used to test nonlinear waveguides facilitated ease in switching 

test samples and provided means to measure waveguides’ transmission characteristics.  

Experimental setups at the Naval Research Laboratory and the US Naval Academy were 

identical.  This section describes the setup, optic-by-optic (see Figure 16). 

Figure 16: The experimental setup (bird’s eye view).  The 
green lines indicate the beam path.  The letters denote each 
optical element. 
A. - Laser; B. and C. - 5% reflecting prisms; D. - Fully 
reflecting mirror; E. - Spatial filter; F. - Lens; G. - Variable 
diameter aperture; H. - Variable waveplate retarder; I. - 
Beam-splitter; J. and K. - Energy sensors; L. and N. - 
Microscope objectives; M. - Waveguide sample. 

 A pulse leaving the source laser first reflects off of two partially reflecting prisms (B and 

C in Figure 16).  These prisms, each reflecting 5% of the propagating pulse, reduce the energy 

associated with the pulse to 0.25% of its original strength.  This reduction ensures that the pulse 

will not damage the waveguide sample or other optics in the setup.  From the prisms, the pulse 

hits and reflects off of a fully reflecting mirror (D), which aims the beam towards the next series 

of optics. 
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 Next, the pulse travels into a spatial filter (E).  The filter ensures the spatial energy 

distribution of the pulse is a nearly Gaussian profile.  It consists of a microscope objective 

followed by a 5 µm pinhole.  The microscope objective focuses the incident pulse.  The pinhole, 

placed at the focal point of the objective, only allows an approximately Gaussian energy profile 

to propagate through it.  Thus, as the pulse focuses through the pinhole, the pinhole filters out 

any noise not contributing to a Gaussian energy distribution.  On the output side, the pinhole acts 

like a point source, emitting the pulse in a spherically symmetric spread.  A lens (F) collimates 

the light emitted from the pinhole. 

 Upon leaving the lens, the pulse travels through a variable-diameter aperture (G).  The 

aperture shrinks the transverse diameter of the propagating pulse to the optimal size; obtaining 

maximum coupling efficiency into the target waveguide requires that the input beam have the 

proper diameter.  The input beam’s proper diameter can be approximately determined from the 

characteristics of the target waveguide and the from the characteristics of the objective used to 

focus the beam into the target waveguide by using the relationship 

d0 = (4λf)/(πd1),   (40) 

where d0 is the diameter required of the input pulse (the diameter of the target waveguide’s core), 

λ is the wavelength of incident light, f is the focal length of the objective employed and d1 is the 

diameter of the target waveguide’s core.  This relationship assumes that the input beam has a 

Gaussian spatial profile.7  The aperture is set to have a diameter = d0. 

 From the aperture, the pulse enters a variable waveplate retarder setup (H).  Although 

Figure 16 represents the waveplate retarder setup as a single element, the instrument actually 

consists of three optics: firstly, a polarizing prism; secondly, the variable waveplate itself; lastly, 

another perpendicularly oriented polarizing cube.  The variable waveplate allows the user to vary 
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the intensity of the propagating pulse.  Light emerging from the laser is linearly polarized, but 

not perfectly.  The first polarizing prism is oriented so that it transmits essentially all of the light.  

The prism cleans up the incident pulse so that, by the time the pulse reaches the variable 

waveplate, it is perfectly polarized.  The waveplate, having some voltage applied across it, 

rotates the polarization of the pulse away from the original polarization.  From the waveplate, the 

pulse continues on to the second, perpendicularly oriented polarizing prism.  This prism only 

allows transmission of the portion of the pulse that shares its (the prism’s) polarization.  

Depending upon the voltage applied to the waveplate, and therefore on how much the waveplate 

rotates the polarization of the pulse, the second polarizing cube only transmits a fraction of the 

incident energy.  The amount that the waveplate alters the polarization of the pulse is adjusted by 

an electronic control circuit.  Thus, the fluence of the pulse emerging from the second prism can 

be continuously adjusted by turning a knob on the control circuit. 

 The attenuated pulse then interacts with a beam-splitter (I).  The beam-splitter allows 

approximately 92% of the pulse to transmit, but reflects 8% at a skew angle.  The reflected 8% 

propagates to an energy sensor (J).  This energy sensor measures the energy associated with the 

reflected portion of the pulse.  By considering the efficiency of the beam-splitter, the energy 

associated with the transmitted 92% (the portion of the pulse that actually transmits to the 

waveguide’s entrance) can be determined.   

 The transmitted pulse continues on to an objective (L).  This objective—experiments 

used a 10X microscope objective—focuses the input pulse.  At the objective’s focal point, the 

pulse couples (at least partially) into the core of the target waveguide (M).  A particular 

waveguide’s coupling efficiency can be empirically determined for use in data analysis. 
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 At the target waveguide’s output side, the emitted light is collected by another objective 

(N).  Usually a 50X, 20X or 10X objective, this optic re-collimates the emitted light into a 

coherent pulse.  The pulse continues to an output energy sensor (K).  By comparing the 

waveguide’s output energy to its input energy and factoring in its coupling efficiency, the 

waveguide’s nonlinear limiting capability can be deduced. 
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7. Methodology 

 After the waveguide is constructed, it is placed into the source laser’s beam path, between 

the input and output objectives.  The input objective is then aligned to focus light pulses into the 

waveguide.  This alignment process can take hours—focusing light into a waveguide’s core 

(sometimes no more that 2 microns in diameter) can prove a daunting task.  After achieving 

maximum coupling efficiency into the waveguide’s core, the output objective is aligned to 

project light to an output energy sensor. 

 Data collection now proceeds.  The laser source fires pulses into the waveguide, 

beginning with input energies no more than about 1 or 2 pJ per pulse.  The energy per pulse is 

slowly increased to a maximum.  Based upon the characteristics of the waveguide being tested, 

this maximum energy will vary.  For example, input energy per pulse for 10 µm ID waveguides 

reaches a maximum of about 1 µJ; energy per pulse for 5 µm waveguides reaches a maximum at 

250 nJ; and maximum energy per pulse for 2 µm waveguides is 100 nJ.  Higher energies than 

these threaten to damage samples.  The energy sensors (see Figure 16) collect the energies 

entering and exiting a sample for each pulse.  These data are then sent to a computer and inserted 

in a spreadsheet.  For a given data run, thousands of data points are collected.  The entire 

process, start to stop, can take up to fourteen hours. 

 Besides testing for transmission characteristics, the energy distributions at the 

waveguide’s output end are observed for different input energies.  A digital camera utilizing a 

1.4 mega pixel CCD array (Charge Coupled Device) takes snapshots of the waveguide’s output 

side.  These images are sent to a computer for collection.  Specialized software is used to 

measure the percentage of total light energy each pixel receives.  In this way, the software builds 
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an energy distribution map of the received pulse.  The energy distribution images (like the one in 

Figure 8) help determine the modal structure propagating through the waveguide’s core. 
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8. Computer Modeling of SiNc 

 The Fortran computer program (see Appendix A) used to simulate SiNc’s nonlinear 

response operates on the principles explained above.  Researchers at the Naval Research 

Laboratory wrote the program to model the limiting responses of various RSA molecules.  The 

program does not account for the physical situation created within a nonlinear waveguide.  It was 

devised to model free-space optical limiters, for which there are virtually no boundary conditions 

placed on the electromagnetic distribution of propagating light.  However, because most of the 

waveguide optical limiters tested in this project are highly multi-mode, this program is expected 

to simulate their limiting responses well. 

The program simulates the firing of light pulses, each pulse being more energetic than its 

predecessor, into the core of a nonlinear waveguide.  By accounting for the absorptive ability of 

the nonlinear core, the program calculates the amount of energy-per-pulse the nonlinear 

waveguide should transmit for each incident pulse.  The program plots two columns of simulated 

data—one column for energy in (per pulse), one column for energy out (per pulse). 

 To create a simulated plot, the program first needs to know the specific parameters of the 

optical limiter being simulated, such as: incident wavelength, SiNc’s σg, the waveguide’s core 

diameter (R0), SiNc’s σe, the concentration of SiNc molecules in solution (C0), the length of the 

waveguide (L0), the full-width-half-max pulsewidth (Tfwhm) of the incident light pulses, and the 

initial energy-per-pulse (E0). 

 The program first calculates the waveguide’s linear transmission by assuming that, 

initially, all of the molecules in solution are unexcited.  To do this, it takes SiNc’s σg (the 

ground-state absorption cross section) and the molar concentration of the solution (C0) and 
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combines them in eqn. (5).  When all the molecules are unexcited, the solution’s overall 

absorption coefficient, α, is 

   α  = α g =  σgC0NA(
mL 1000

L 1 ),   (41) 

where C0 is the molar concentration of the SiNc solution and NA is Avogadro’s Number.  The 

program considers α  and the waveguide’s length (L0) to calculate the fractional linear 

transmission (Tlinear) the waveguide should display: 

   Tlinear = e       (42) 0Lα−

Assuming that a simulated incident pulse has an initial energy E0, then the maximum transmitted 

energy is given by (Tlinear)(E0). 

 In order to account for the nonlinear core’s absorptive ability (over and above the linear 

ground-state absorption), the simulation begins by building a mathematical representation of the 

core as a cylinder.  This cylinder (defined using a cylindrical coordinates system) has some 

radius and some length (i.e. the radius and length of the core being simulated).  Thus, every point 

in the core can be represented by a set of coordinates, (r, φ, z).  However, because the simulated 

pulse exhibits a Gaussian energy distribution in both space and time—the pulse is azimuthally 

symmetric—it is unnecessary to consider the φ-coordinate of the core for these simulations. 

Next, the program builds a simulated input pulse.  For the temporal width of the pulse, 

the program takes the full-width-half-max (FWHM) pulsewidth entered earlier (for example, the 

laser at Naval Research Laboratory creates FWHM pulses lasting 7 ns).  The transverse (spatial) 

width of the pulse is assigned the same width as the waveguide’s core diameter.  As the program 

iterates forward in time, this pulse will gradually propagate through the core of the simulated 

waveguide. 
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 The program now assigns an initial time from which to start the simulation.  It begins by 

determining the length of the 1/e pulsewidth from the FWHM pulsewidth (the 1/e pulsewidth is 

another convention used to discuss the temporal length of a pulse) 

Tp = 
)2(ln2

Tfwhm
1-

,     (43) 

where Tp is half the pulse’s 1/e pulsewidth.  Using Tp, the program calculates T0, the initial time 

   T0 = -2.5Tp.      (44) 

Setting T0 to this value, the simulation begins well before the simulated pulse comes into contact 

with the simulated waveguide’s core. 

 As an example of how the program performs transmission calculations, consider the 

pulse interacting with the waveguide at some time, t.  At this instant, the program simulates the 

pulse as extending through the core along the z-axis, such that each point in the core is 

interacting with a different number of photons (because the program assigns the pulse a Gaussian 

energy distribution, it introduces different numbers of photons to different points in the core). 

Because a nonlinear material’s absorptive ability depends upon the density of photons 

(energy) present, then each portion of the core will absorb a different fraction of photons.  The 

more photons present in a differential volume of the core, the higher the fraction of photons that 

volume can absorb.  The program determines the number of photons, G, present in a differential 

volume in the core using 

    dt),,I(G
νh

tzr
= ,    (45) 

where I(r,z,t) is the intensity of the pulse in that differential volume at the instant being 

considered, and dt is the amount of simulated time (in which the pulse propagates) before the 
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)

program again considers the photon density at this particular point.  G is the number of photons 

that pass through the differential volume during time dt. 

 Using each particular volume’s absorptive coefficient (see eqn. (5)), the program then 

calculates the fraction of photons each differential volume in the core absorbs.  As a particular 

volume in the core absorbs photons, more of its molecules shift to the excited state.  Thus, after 

time t, a particular volume of the core may have a higher excited-state density.  For a particular 

volume, the program calculates the new density for the ground and excited states, using 

  G ,     (46) G))((M01 gσ=

where M0 is the previous concentration of molecules in the ground state (at that particular 

volume in the core).  G1 is the number of molecules which enter the excited state during time dt 

(in that particular volume).  Thus, the new ground-state population for this differential volume 

(to be used in subsequent calculations) is given by 

   ,     (47) 100 GMN −=

where N0 is the new ground-state density.  And, the new excited-state density (for this volume), 

is given by 

   N1 = M1 + G1,      (48) 

where N1 is the excited state’s new density after time dt, M1 is the excited state’s density at the 

beginning of time dt, and G1 is given above. 

 Thus, the new absorptive coefficient (for this particular volume) becomes 

   α ,    (49) N()(N 10),,( egtzr σσ +=

which is identical to eqn. (7).  The program uses the new α to determine the number of photons 

that the volume will absorb when the next part of the pulse arrives some small time later. 
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The program sums the absorptive effect calculated for all the differential volumes in the 

core (r,z) and all times (t) in order to find the net amount of energy the core absorbs from the 

incident pulse while it propagates within the waveguide.  For each pulse, then, the transmission 

(T) is defined to be 

  T = 
InEnergy 

OutEnergy .     (50) 

And, relative transmission is defined to be 

   
linear

rel T
T

=T ,      (51) 

where Tlinear is defined in eqn. (42). 

 

 

 

 

 



    
          
                                                                                 48                         
9. Multi-Mode Waveguide Limiter Results 

Presented below are the data taken from a number of waveguides.  The data are displayed 

graphically and indicate the transmission characteristics of each tested waveguide.  Although 

linear data are not presented here, all nonlinear waveguides were compared to linear waveguides 

having the same characteristics.  Nonlinear waveguides were filled with solutions of SiNc 

dissolved in Dioctyl Phthalate (DOP).  DOP is an optically inert substance whose index of 

refraction (nD ~1.485) is higher than that of the silica (n532 ~ 1.462) capillaries used to make the 

waveguides.  Data presented were taken from waveguides with inner diameters ranging from 3.2 

µm to 200 µm.  Analyses of the data are presented in the subsequent section. 

 

A.  200 µm (ID) Waveguide 

Figure 17 portrays the transmission characteristics of a 200 µm ID nonlinear waveguide.  

In this case, the waveguide’s core was a solution of SiNc concentrated in DOP at 4.23 x 10-5 

mol/L.   The waveguides’ length was 10 cm.  The nonlinear waveguide, therefore, created a 

linear transmission of 56%.  Input pulses were 7 ns (FWHM). 

These data, having been taken before the invention of the device outlined in Section 3, 

were procured using another, similar device.  This older device also incorporated a capillary 

waveguide, but rather than funneling light into the waveguide through an optical flat, a 

commercial multi-mode fiber optic (core diameter = 100 µm) was inserted into the end of the 

waveguide to introduce the incident pulses to the limiting core.  On the output end, a second 

fiber optic carried the limited pulses to the output energy sensor. 
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Figure 17: The relative transmission plot for the 200 µm nonlinear waveguide.  The 
black dots represent the data, the solid line represents the simulation of the data. 

 

 

 

 

B.  75 µm (ID) Waveguide 

The data presented in Figure 18 were taken from a 75 µm ID nonlinear waveguide 

incorporated into the same type of device used to take the 200 µm waveguide data.  In this case, 

the concentration of SiNc in DOP was 5.81 x 10-4 (mol/L).  The waveguide was 1.2 cm long.  

This yielded a Tlinear = 39%.  The input fiber, which funneled light into the waveguide’s 

nonlinear core, had a core diameter = 50 µm.  Input pulses were 7 ns (FWHM). 
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Figure 18:  The relative transmission plot for a 75 µm nonlinear waveguide.  Gray 
dots are the data, the dotted line is a simulation (effective core diameter = 75 µm) 
and the thick line is a second simulation (effective core diameter = 35 µm). 

 

 

C.  10 µm (ID) Waveguide 

The data presented in Figure 19 were taken from a 10 µm ID nonlinear waveguide 

incorporated into the device explained in Section 3.  In solution, the SiNc was concentrated to 

3.25 x 10-4 mol/L and the waveguide was 1.8 cm long, yielding a Tlinear of 45% for this optical 

limiter.  Light was focused in through the entrance optical flat using a 10X objective.  The device 

was adjusted to yield maximum coupling efficiency into the waveguide.  Input pulses were 7 ns 

(FWHM). 
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Figure 19:  The relative transmission plot for a 10 µm nonlinear waveguide.  Gray 
dots are the data, the slender line is a simulation (effective core diameter = 10 µm) and 
the thick dotted line is a second simulation (effective core diameter = 3.4 µm). 

 

D.  6.3 µm (ID) Waveguide 

The data presented in Figure 20 were taken from a 6.3 µm ID nonlinear waveguide using 

the device explained in Section 3.  Input pulses were 5 ns (FWHM).  In solution, the SiNc was 

concentrated to 3.25 x 10-4 mol/L and the waveguide was 1.8 cm long, which yielded a Tlinear of 

45% for this optical limiter.  Light was focused in through the entrance optical flat using a 10X 

objective.  The device was adjusted to yield maximum coupling efficiency into the waveguide.   
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Figure 20:  The relative transmission plot for a 6.3 µm nonlinear waveguide.  Gray dots 
are the data, the opaque line is a simulation (effective core diameter = 6.3 µm) and the 
dotted line is a second simulation (effective core diameter = 3.4 µm). 

 

 

E.  3.2 µm (ID) Waveguide 

The data presented in Figure 21 were taken from a 3.2 µm ID nonlinear waveguide 

incorporated into the device explained in Section 3.  Input pulses were 5 ns (FWHM).  In 

solution, the SiNc was concentrated to 3.25 x 10-4 mol/L and the waveguide was 1.8 cm long, 

which yielded a Tlinear of 45% for this optical limiter.  Light was focused in through the entrance 

optical flat using a 10X objective.  The device was adjusted to yield maximum coupling 

efficiency into the waveguide.   
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Figure 21: The relative transmission plot for a 3.2 µm nonlinear waveguide.  Gray dots 
are the data and the dotted line is a simulation (effective core diameter = 3.2 µm). 
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10. Analysis of Multi-Mode Limiter Results 

A.  200 µm (ID) Waveguide 

 The data presented above paint an interesting picture.  As expected, the 200 µm data set 

(see Figure 17) coincides with its simulation quite well.  The simulation parameters are: σg =   

2.3 x 10-18 cm2; σe = 47.1 x 10-18 cm2; R0 = 100 µm; L0 = 10 cm; Tfwhm = 7 ns; SiNc molar 

concentration = 4.23 x 10-5 mol/L. 

 The 200 µm waveguide limited much like a free-space sample of similar concentration 

would (that is, if one could extend the Rayleigh Range to a length of 10cm).  This occurs for a 

number of reasons.  Firstly, the core diameter of this waveguide is so large that the number of 

modes that it supports approaches the continuum expected for a bulk material.  The total number 

of confined modes, M, can be found approximately using the relationship 

M ≈ V2/2.    (52) 

For this waveguide, M ≈ 47,000.  Secondly, light funneling into the waveguide’s core (via the 

commercial fiber optic) enters the waveguide with an already extremely multi-modal energy 

distribution.  The input pulses spread throughout the entire transverse area of the core as they 

propagate through the SiNc solution.  The waveguide’s length of 10 cm further reinforces this 

phenomenon—the longer a fiber waveguide is, the more energy different modes can share during 

propagation.10  The pulses, by stimulating a large number of allowable modes in the core, are 

allowed to propagate through the core with a wide Gaussian spatial energy distribution.  Thus, as 

expected, the 200 µm waveguide fits the simulation quite well. 

B.  75 µm (ID) Waveguide 

 The 75 µm nonlinear waveguide, on the other hand, tells a much different story (see 

Figure 18).  In this case, the 75 µm simulation predicts a limiting response much less effective 
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than 75 µm waveguide actually produces.  The parameters for simulation are: σg = 2.3 x 10-18 

cm2; σe = 47.1 x 10-18 cm2; R0 = 37.5 µm; L0 = 1.17 cm; Tfwhm = 7 ns; SiNc molar 

concentration = 5.81 x 10-5 mol/L.  One possible explanation for this behavior is some type of 

mode channeling effect that confines the light to an effective area smaller than the actual area of 

the waveguide core.  It is conceivable that, in this case, because the input commercial fiber optic 

had a relatively small diameter (~50 µm), the incident pulses stimulated relatively few modes 

upon entering the nonlinear waveguide’s core.  Also, because the nonlinear waveguide is so short 

(1.17 cm), there is not sufficient propagation distance for pulses to spread throughout the core as 

they propagate.10  Light propagating into the 75 µm core stimulates only a few modes, creating 

an energy distribution near the center of the core.  These few modes may be a small fraction of 

the total number of allowed modes that this fiber is calculated to support (M ≈ 6650).  As a 

result, because light pulses propagate as more intense packets restricted to the center of the core, 

the waveguide limits better than the simulation would indicate. 

 In effect, the waveguide demonstrates a smaller diameter (smaller than 75 µm).  The 

solid-line plot in Figure 18 is a simulation of a nonlinear waveguide having a core diameter of 35 

µm.  The simulation parameters are: σg = 2.3 x 10-18 cm2; σe = 47.1 x 10-18 cm2; R0 = 17.5 µm;  

L0 = 1.17 cm; Tfwhm = 7 ns; SiNc molar concentration = 5.81 x 10-5 mol/L.  This simulation fits 

the actual data more closely.  Thus, the propagating light pulses confine their spatial extents to a 

radius of ~ 18 µm (measured from the waveguide’s transmission axis). The 75 µm waveguide 

acts like a 35 µm waveguide. 

C.  10 µm (ID) Waveguide 

Figure 19 shows the data taken from the 10 µm nonlinear waveguide.  Data were 

acquired from this waveguide using the device explained in Section 3.  Adjusting the 10X input 
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objective to maximize the coupling efficiency into the core of the waveguide ensures that only 

the modes close to the transmission axis are stimulated.  Based upon the results achieved with 

the 75 µm waveguide, it is expected that the 10 µm waveguide will limit better than a simulation 

of a 10 µm waveguide would predict. 

 The solid-line plot in Figure 19 represents a simulation of a 10 µm nonlinear waveguide’s 

limiting response.  In this case, the total number of allowed modes is M ≈ 120.  As is very 

apparent in the plot, the nonlinear waveguide begins limiting light earlier than the simulation 

predicts; the actual data show that the optical limiter began limiting against pulse energies of ~ 

100 pJ, the simulation does not begin to limit until pulse energies of ~ 1 nJ.  This order-of-

magnitude discrepancy can be explained by the mode channeling effect.  The simulation 

parameters for the 10 µm simulation are: σg = 2.3 x 10-18 cm2; σ = 47.1 x 10-18 cm2; R0 = 10 µm; 

L0 = 1.8 cm; Tfwhm = 7 ns; SiNc molar concentration = 3.25 x 10-4 mol/L. 

Again, simulating smaller core diameters can help to estimate the effective diameter of 

the 10 µm waveguide’s core.  The dotted-line plot in Figure 19 is a simulation of a 3.4 µm 

nonlinear waveguide—it fits the data almost exactly.  The simulation parameters are:                 

σg = 2.3 x 10-18 cm2; σ = 47.1 x 10-18 cm2; R0 = 3.4 µm; L0 = 1.8 cm; Tfwhm = 7 ns; SiNc molar 

concentration = 3.25 x 10-4 mol/L.  Thus, a good approximate value for the diameter of the mode 

channel created in the 10 µm waveguide’s core is ~ 3.4 µm. 

D.  6.3 µm (ID) Waveguide 

Figure 20 shows data collected from a 6.3 µm nonlinear waveguide.  It should be 

mentioned that these data were taken at the US Naval Academy (whereas the other data were 

taken at the Naval Research Laboratory) using a different laser (which created 5 ns pulses 

(FWHM)) and a different set of energy meters.  It was very difficult to electromagnetically 
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isolate the energy sensors, and the readings at low energies proved very noisy (as is quite 

apparent in Figure 20). 

A 5 ns incident pulsewidth should not provoke a limiting effect as easily as a 7 ns 

pulsewidth.  Indeed, as the data demonstrate, a 5 ns pulse does not induce as marked a limiting 

effect, and the waveguide actually begins to limit at approximately the same energy-per-pulse 

that the 10 µm waveguide does (the 10 µm waveguide was investigated using 7 ns pulses).  

However, this effect alone cannot explain the observed behavior.  The 6.3 µm waveguide 

produces an unexpected response.  Apparently, the mode channeling effect observed in the 75 

and 10 µm waveguides is only partially demonstrated in the 6.3 µm waveguide.  As the 

waveguide begins to limit, it does demonstrate a smaller effective core diameter—it fits the 3.4 

µm simulation for low input energies (this simulation is given by the dotted line in Figure 20).  

However, as the input pulses become more energetic, the waveguide’s response stops 

demonstrating the mode-channeling effect, and the data begin to fit a 6.3 µm simulation (the 

solid line in Figure 20).  The jump from the 3.4 µm simulation to the 6.3 µm simulation begins to 

occur for input energies of ~ 1 nJ. 

The behavior of the 6.3 µm waveguide is difficult to explain.  In this case, the core 

diameter is so small that the total number of allowed modes is M ≈ 45.  The waveguide’s core-

cladding boundary conditions may be playing a significant role in the waveguide’s response.  

One possible explanation is that because so few modes exist within the core, as input energy 

increases beyond 1 nJ, the nonlinear response of the core forces a redistribution of propagating 

light energy to the perimeter of the core.  Thus, an smaller effective core diameter is observed for 

low input energies, but this effect dies as the energy-per-pulse rises above 1 nJ. 
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For the 6.3 µm simulation, parameters are: σg = 2.3 x 10-18 cm2; σe = 33.6 x 10-18 cm2;   

R0 = 3.15 µm; L0 = 1.8 cm; Tfwhm = 5 ns; SiNc molar concentration = 3.25 x 10-4 mol/L. For 

the 3.4 µm simulation, parameters are: σg = 2.3 x 10-18 cm2; σe = 33.6 x 10-18 cm2; R0 = 1.7 µm; 

L0 = 1.8 cm; Tfwhm = 5 ns; SiNc molar concentration = 3.25 x 10-4 mol/L. 

E.  3.2 µm (ID) Waveguide 

 Figure 21 presents the data produced by a 3.2 µm nonlinear waveguide.  These data were 

also taken at the US Naval Academy.  At the time these were taken, the energy sensors used to 

collect the data had been sufficiently isolated from electromagnetic noise; these data are much 

less noisy than the 6.3 µm waveguide’s data. 

 It is so difficult to couple into a 3.2 µm core (it might take hours to adjust the apparatus to 

couple light into the core) that trying to stimulate any given set of modes becomes an act of 

futility.  Also, within this 3.2 µm core, few modes exist (M = 12).  Most of the remaining 

allowable low-order modes distribute energy toward the perimeter of the core.  Thus, it is a safe 

assumption that the 3.2 µm waveguide will not demonstrate any mode channeling effect. 

As expected, the data do not indicate any mode channeling effect.  The data in Figure 21 

coincide very closely to the 3.2 µm simulation (the dotted-line plot in the Figure 21).  The 

simulation parameters are: σg = 2.3 x 10-18 cm2; σe = 33.6 x 10-18 cm2; R0 = 1.6 µm; L0 = 1.8 cm; 

Tfwhm = 5 ns; SiNc molar concentration = 3.25 x 10-4 mol/L. 
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11. The Single-Mode Optical Limiter 

 From the inception of this project, one of the main goals was to create and test a single-

mode nonlinear waveguide.  To our knowledge, this has never before been accomplished.  The 

idea was that the single-mode waveguide optical limiter could potentially limit against input 

pulse energies drastically lower than multi-mode waveguide limiters.   

 In a multi-mode waveguide, stimulated modes can transfer energy amongst one another.  

The implication is that the mode field may redistribute energy so as to minimize the fluence that 

any part of the core experiences.  This redistribution acts to minimize the amount of limiting that 

the core can achieve.  However, in a single-mode waveguide, only one mode exists.  Therefore, 

this mode cannot distribute energy into other modes.  It can only carry energy through the core 

with an approximately Gaussian distribution, holding most of its energy near the center of the 

core as it propagates. 

 Furthermore, if the core of a single-mode nonlinear waveguide is composed of a strongly 

absorbing RSA material (like SiNc), then the core will preferentially limit the most intense 

portion of the incident pulse (the center).  Because the lowest-order mode may only propagate 

with an approximately Gaussian energy distribution, then limiting in the center of the pulse’s 

energy distribution may have repercussions throughout the rest of the distribution.  Our theory 

predicts that the most intense limiting effect, which is created at the center of the pulse, will 

flatten the rest of the of the allowed Gaussian energy distribution, forcing much of the 

propagating energy to be lost out the sides of the waveguide’s core. 

 The discussed energy redistribution was easily observed in some of the multi-mode 

nonlinear waveguides.  Perhaps the best example, the 6.3 µm nonlinear waveguide clearly 
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demonstrates modal energy redistribution as the energy-per-pulse made incident upon the core 

was increased (see Figure 22). 

 B. C. D. E. A. 

 

 Figure 22: Energy distribution images from the output end of the 6.3 µm nonlinear 
waveguide’s core.  The pulse energy that creates image A is ~ 200 pJ and most of the 
energy is concentrated in the center of the core.  The pulse energy that forms image B is ~ 
900 pJ.  At 900 pJ per input pulse, the propagating light is energetic enough to stimulate a 
nonlinear response from the waveguide.  Image B shows that the waveguide’s nonlinear 
response begins redistributing energy among the modes.  The redistribution forces energy 
to distribute more evenly throughout the entire area of the core.  The redistribution 
becomes more radical in C. (3 nJ per pulse), D. (19 nJ per pulse), and E. (260 nJ per 
pulse). 

 

 

 

 

 

 A successful single-mode optical limiter was not constructed until April of 2002.  This 

single-mode device incorporates a 3.2 µm nonlinear waveguide into the same type of device 

explained in Section 3.  An aluminum block, which is connected to a thermal control unit, sits in 

contact with the suspended capillary. 

 By raising the temperature of the waveguide’s core, the core’s index of refraction begins 

to decrease.  If the index of refraction of the core becomes low enough (relative to the cladding’s 

index of refraction), the core will only allow the lowest order mode (J0) to propagate.  By 

observing the output energy distribution of a linear core for various core temperatures, the 

temperature the device would begin exhibiting only single-mode propagation was determined to 

be ~ 50 degrees Celsius.  During experiments investigating the single-mode nonlinear 

waveguide, the capillary was held at this temperature. 
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 The single-mode limiter may also have another advantage over multi-mode designs.  

Since, in the single-mode waveguide, the core index of refraction so closely approaches the 

index of refraction of the cladding, nonlinear refractive-index changes can begin to have serious 

affects on the transmission characteristics of a nonlinear waveguide.  For a core made of a SiNc 

solution, high-energy pulses can cause a negative refractive-index change.  If the energy of the 

pulse is high enough, this nonlinear change may actually force the core to exhibit a lower 

refractive index than the cladding, resulting in the loss of any waveguiding (i.e. total internal 

reflection would cease). 
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12. The Single-Mode Results 

 The constructed single-mode nonlinear waveguide was able to limit light amazingly well.  

In fact, the waveguide’s limiting response initiated so early that, for the energies stimulating the 

nonlinear response, the signal-to-noise ratio was too low for the energy sensors to detect.  At this 

point, it seems that the single-mode limiter initiates its nonlinear response against input pulse  

Figure 23:  The single-mode energy distribution 
exhibited within the core of the single-mode 
limiter.  A) shows the distribution created by an 
input pulse energy of ~ 25 nJ. B) shows the 
distribution created by an input pulse energy     
of ~ 50 nJ. 

A. B. 

energies somewhere below 20 pJ per pulse (a full order of magnitude earlier than the 3.2 µm 

multi-mode nonlinear waveguide).  Unfortunately, because the energy sensors could not sense 

energies low enough to detect the waveguide’s nonlinear shift, there is currently no way to plot 

the waveguide’s transmission characteristics.  In future, this problem may be solved by 

employing photo-multiplier tubes to amplify the waveguide’s output energy. 

 Regardless of the difficulty in producing a transmission plot for the single-mode 

waveguide, core images were produced for various input energies-per-pulse (see Figure 23).  

These images show that the waveguide remains single-mode for all input energies-per-pulse.  

Building a single-mode waveguide optical limiter is an achievable feat.  It produces a limiting 

response far more effective than any of the multi-mode waveguide optical limiters constructed in 

this project. 
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13. Conclusions and Future Work 

 This project has certainly demonstrated that nonlinear waveguide optical limiters are an 

effective means with which to limit light.  To our knowledge, the limiting exhibited by some of 

the SiNc waveguides (the 10 µm waveguide and the single-mode waveguide in particular) far 

surpasses the limiting response achieved by SiNc in any previous experiments.  And, to be sure, 

the waveguide geometry proves a very effective tool when building an optical limiter 

 The data presented above also reaffirm the validity of the SiNc’s well documented 

effective three-level model.  Using this three-level model as the basis for simulations, the 

simulations (when mode channeling was taken into effect) created quite accurate facsimiles of 

the real data.  This computer simulation cannot accurately model the response of the single-mode 

limiter.  Building a model that accounts for core-cladding boundary conditions is a future goal. 

 The data have also shown the sensitivity that nonlinear waveguide limiting responses can 

demonstrate towards launch conditions (the way light is coupled into the core of a waveguide).  

It seems that in short 1.8 cm fiber segments, propagating pulses are not given enough time to 

spread their energies across a waveguide’s entire modal field (given that only a few modes are 

stimulated to begin with).  Another interesting finding, the energy distribution images taken of 

the 6.3 µm nonlinear waveguide explain how a small-diameter waveguide’s modal field can 

redistribute energy if a nonlinear response is stimulated within the waveguide (see Figure 22). 

 Perhaps most importantly, this project has proven that a single-mode nonlinear limiting 

waveguide is a viable device.  And, it has demonstrated that a single-mode limiter can limit light 

against extremely low energies.  The core-cladding boundary conditions within a fiber 

waveguide can reinforce a nonlinear core’s ability to limit light. 
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 In future experiments, heavy emphasis will be placed on refining the single-mode 

waveguide limiter.  Special steps will be taken to reduce noise from the experimental setup and 

more precise energy sensors will be employed to measure the nonlinear response of the single-

mode limiter.  Efforts to build a mathematical model for the single-mode limiter have already 

begun.  Other future investigations will probe the limiting abilities of different nonlinear 

materials when housed within the cores of waveguides.  Finally, nonlinear waveguides will be 

tested against different wavelengths, including infrared wavelengths used in most commercial 

fiber systems. 
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Appendices 
 
Appendix A: Fortran Model for a Three-Level Reverse-Saturable Absorber 
 
C This program computes an 1-D array of energy output vs. a similar 1-D array 
C of energy input for a three level limiter (aka an excited state absorber). 
C It treats the input beam as temporal and spatial gaussian.  This is a free space 
C simulation and takes no account for boundary conditions provided by waveguide 
C core and cladding indices of refraction.  Comments in this program indicate necessary 
C input parameters for the 3 level limiter SINC. 
C The original form of this program was created by Ryan Lindle from NRL. 
C He again revised the program 6/1/93.  Further modifications have been made by 
C Midshipman JJ Wathen of the US Naval Academy for his Trident Project investigating 
C nonlinear optical limiting within capillary waveguides.  His modifications were made 
C in February of 2002. 
C Two more levels can be added by decommenting the relevant lines,  
C       restoring the type definitions at the beginning   
C       removing the statements that set G2 and R2=0 
C       and changes in the input and output statements. 
C Revised to correct radial distribution of the Gaussian beam 
C Altered the array sizes to fit steps used better 
C Varied the radial integration step size with r 
c Incorporated the reflectivity corrections, print files  
C    with and without these corrections 
C Revised 6/30/95 J Shirk  Ver F2A has 50 energy steps 
C 
 IMPLICIT REAL*8 (A-Z) 
 INTEGER I,J,K,IR,IZ,IT,II,IIN,M_flag,INC_DR 
C Elements of arrays N0 and M0 indicate ground state population for various Ein, R, Z, T. 
C Elements of arrays N1 and M1 indicate excited state population. 
 DOUBLE PRECISION N0(60,200),N1(60,200) 
 DOUBLE PRECISION M0(60,200),M1(60,200) 
 DOUBLE PRECISION TRANS(100),I0(100),TRexp(100),Msum 
 REAL*8 EIN(100) 
 COMMON/XYZ/N0,N1,N2,N3,M0,M1,M2,M3,TRANS,I0,TRexp 
c  Avogadro's number         
 NA=6.022E23                      
c  Planck's constant/2 Pi            
 HBAR=1.054E-34                    
c  Pi                                
 PI=4*ATAN(1.0)                   
c  Speed of Light           
 C=3E8                            
 OPEN (UNIT=1,FILE='temp.dat',STATUS='UNKNOWN') 
 OPEN (UNIT=2,FILE='texp.dat',STATUS='UNKNOWN') 
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 write (*,*) 'Enter WAVELENGTH (nm)  ' 
 READ(5,*) LAMDNM                       
c  Wavelength IN (m)           
 LAMBDA=LAMDNM*1E-9                    
c  Pulsewidth (FWHM).  7E-9 is Tfwhm for Nd:YAG at NRL.        
 Tfwhm=7E-9                    
C  Beam spot radius for capillary is the radius of the capillary. 
 write (*,*) 'Enter SPOT RADIUS (TO 1/e) IN AIR (microns)  ' 
 READ(5,*) R0Mic                       
c  HW1/eM Spotsize in cm             
 R0=R0mic*1e-4  
 write (*,*) 'WAVELENGTH (um):',SNGL(LAMBDA) 
 write (*,*) 'PULSEWIDTH (FWHM):',SNGL(Tfwhm) 
 write (*,*) 'SPOTSIZE (HW1/EM):',SNGL(R0) 
 Tp=Tfwhm/(2*SQRT(ALOG(2.0)))     
c  Set initial Time. At t0, pulse has only contacted limiting material 
c  for ~.281 ns nanoseconds.          
 t0=-2.5*Tp                        
c Set the # of radial steps                         
 Ir=60                                    
C  Set the initial radial step size to .05 R0  
 dr=R0*.05                         
C y will start at dr and be stepped by dr for the radial integration 
C   dr will vary in the radial integration loop to maintain power 
c   (i.e. small dr near center of beam, large dr at the perimeter of the wavefront) 
C ** Input Sample parameters ************************************         
        write (*,*) 'Enter SAMPLE THICKNESS (cm)  ' 
c L0=1.8 cm       
        READ(5,*) L0 
c         Convert thickness to cm         
c L0=L0*1e-4. 
 write(*,*) 'INPUT--Ground state cross section  ' 
 READ (5,*) XS0                
        write (*,*) 'INPUT--MOLARITY(MOLES/LITER)  ' 
        READ (5,*) MOLARITY              
c MOLARITY=2.63E-4 mol/L for SINC in 1.8 cm sample at 45% T 
c XS0 for SINC = 2.26E-18 cm^2 
c XS1 for SINC = 45E-18 cm^2 
c Here, we calculate the A0, the linear coefficient of absorption. 
c It is the XS0*DENSITY (DENSITY is basically the initial population in 
c the ground state). 
 DENSITY=NA*MOLARITY/1000 
 ALPHA=XS0*DENSITY 
 A0=alpha 
 write (*,*) ' N0=',density,' Alpha=',ALPHA               
 write (*,*) 'INPUT EXCITED STATE CROSSECTION--X1   '               
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 READ (5,*) XS1                              
 XS2=0 
C Set the number of z steps to one step for every .005 increment in initial abs  
C It might be necessary to increase this for strong RSA materials 
C For strongly absorbing samples this gives alot of Z steps. It can be reduced 
 Iz=10+IFIX(200.0*SNGL(ALPHA*L0)) 
c Iz is the number of z steps 
 dz=L0/Iz                         
 write (*,*) 'No of z steps ',Iz,'z step size=',dz*1e4,' microns' 
 write (*,*) 'No of r steps ',Ir,'r step size=',dr*1e4,' microns' 
c Photon Energy              
 hw=2*PI*HBAR*C/LAMBDA            
 write (*,*)'hw=',hw,' J/photon ' 
C AREA is an approximate 1/e spot area           
 AREA=PI*R0*R0                    
 write (*,*) 'laser spot area (1/e)= ',AREA,' cm2 ' 
C        write (*,*) 'INPUT--REFRACTIVE INDEX OF SAMPLE, SUBSTRATE  ' 
C        READ (5,*) N_SAMPLE,N_SUB 
C Here we are accounting for reflectivity losses.  Because the data we are trying 
C to model is already normalized, we do not need to account for reflective losses. 
C Thus, we set the index of air equal to the index of the substance.        
 N_SAMPLE=1.0 
 N_SUB=1.0 
c  Reflection calculation from the Refractive Indicies 
 R_SAMPLE=((N_SAMPLE-1)/(N_SAMPLE+1))**2 
 R_SUB=((N_SUB-1)/(N_SUB+1))**2 
 R_INT=((N_SAMPLE-N_SUB)/(N_SAMPLE+N_SUB))**2 
 REFL=(1-R_SAMPLE)*(1-R_SUB)*(1-R_INT) 
 write (*,*) ' REFLECTION LOSS=',REFL 
C        write (*,*) 'INPUT Upper state Lifetime --T1  ' 
C        READ (5,*) T1                             
C Here we enter the lifetime of the first excited state.  We are approximating it 
c as being "long."  This is an effective lifetime because SINC is actually a five level 
c model.  T1 is the effective lifetime of the first excited singlet and triplet states 
c combined. 
 T1=37E-9 
c In this version lifetimes T2 and T3 are not used. 
c Lifetime of the second excited state is "short."              
 T2=1e-9 
 T3=T2 
 Tmin=Tp 
 IF(T1.LT.Tmin) Tmin=T1 
C        IF(T2.LT.Tmin) Tmin=T2 
C        IF(T3.LT.Tmin) Tmin=T3 
c As defined previously, Tp is approximately blah (Tfwhm/2*sqrt(alog(2))). T1 is obviously 
c bigger than this.  In the next calculation, Tmin is set to 0.1*the shortest characteristic  
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c time (i.e., .1*Tp). The new Tmin is used below to determine the time steps 
 Tmin=Tmin/10 
c  Fsat is the saturation fluence (Gconst in the original program)        
 Fsat=hw/XS0 
 II=0 
99      write (*,*) ' INPUT INITIAL INCIDENT ENERGY    ' 
 READ (5,*) E0 
 IF(E0.EQ.0) GO TO 9123 
C The initial energy is E0, it will be incremented by dE for IIN steps         
 dE=1.2 
 IIN=60 
 write (6,1600)  N,A0,exp(-A0*L0)                      
C Write the initial data out to file         
 WRITE(1,1100) LAMBDA,ALPHA,REFL 
 WRITE(1,1200) XS0,XS1,exp(-A0*L0)  
 WRITE(1,1300) T1,T2,T3 
 WRITE(2,1100) MOLARITY,ALPHA 
 WRITE(2,1200) XS0,XS1 
 WRITE(2,1300) T1,T2,T3 
C 
**** Intensity Loop ********************************************************** 
 DO 600 II=1,IIN 
C  The peak incident intensity, I0, is the energy/ pi^(3/2)*tp*r0*r0 
C       AREA has been defined as pi*r0*r0         
 I0(II)=E0/(SQRT(Pi)*AREA*Tp)                     
 EIN(II)=E0 
C ** Useful diagnostics that can be printed if desired 
c        write (*,*) 'ENERGY=',E0 
c        write (*,*) ' FLUENCE=',E0/AREA 
c        write (*,*) ' FLUX=',I0(II)/hw 
c        write (*,*) 'POWER=',I0(II)*AREA 
c        write (*,*) 'INTENSITY=',I0(II) 
**** Initialize concentrations in levels 0 and 1. 
 DO 12 J=1,IR 
  DO 11 K=1,IZ 
   N0(J,K)=DENSITY                  
   M0(J,K)=DENSITY                   
   N1(J,K)=0.0                 
   M1(J,K)=0.0         
11       CONTINUE 
12      CONTINUE 
C Compute the total concentration, which should remain constant         
 N=N0(1,1)+N1(1,1)                
c Initial Absorption Coeff.  
 A0=XS0*N0(1,1)+XS1*N1(1,1)          
**** Time integration **************************************************** 
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C     
C Statement 20 is the beginning of the time integration,  
C   The loop end is near label 600 
C I is index for the time integration,  
C II is the current incident energy index 
C 
C   Initialize the incident and transmitted energy to zero         
 E_TRANS=0 
 E_INC=0 
 Et=0.0 
C Start time at t0=-2.5 tp         
 t=t0 
 I=0 
20      I=I+1 
C Compute the intensity at time t, the current time, ie. I(r=0,z=0,t=t)        
 Ioot=I0(II)*EXP(-((t*t)/(tp*tp)))            
c Set the time step to 0.1 *pulse width or the response time  
c  Fsat/I is the absorber response time             
 dt=Fsat/(10*Ioot)                      
 IF (Tmin.lt.dt) dt=Tmin 
C 
C**** Radial integration ************************************************** 
C         
 EXC=I*0.5-IFIX(I*0.5)                    
c This is an EVEN/ODD Exchange Var. EXC is 0 for even I, 1 for odd I 
C It is used to switch between loop beginning at 40 and that at 200 for          
C the state population calculations.  
C This allows the storage of the populations on the previous time step         
C   On the initial pass I=1 so EXC=1  
C 
C **** Initilize variables which store results of the integration    
C *Prot* sums the incident intensity*area        
c         It is the Incident Power (J/sec) during the  Radial Integration             
 Prot=0.0                                
C *Prlt* and *Pj* sum the transmitted  intensity*area     
c  They are the transmitted Power (J/sec) during the  Radial Integration        
 Prlt=0.0 
 Pj=0.0 
C 
C ** y is the current radial coordinate. starts at .05*R0 
C    the y=0 point has no differential area 
C     y is incremented by dr at the end of the loop      
 y=0.05*R0 
C This integer helps size dr at large radii          
 INC_DR=1 
C 
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C ***** Here begins the loop for the radial integration 
C 
30      DO 400 J=1,IR 
C Irot is the incident intensity at the current r and the current time         
C Two variables: Iabs and Irzt carry the intensity as a fn(Z) at r and t       
C They will be reduced by the transmission as z is incremented         
 Irot=Ioot*EXP(-((y*y)/(R0*R0)))                      
 Iabs=Irot 
 Irzt=Irot                                
c        
**** Z integration *///*********************************************** 
40      DO 300 K=1,IZ 
C  
C Irzt contains the current intensity for this r and t as we move through z 
C G is the no of photons/sec in the current cell * dt  
 G=Irzt*dt/hw                             
c The program is written to go to 200 first   
 IF(EXC.GT.0) GO TO 200 
**** Level 0************************************************************** 
C This section is for the odd iterations in time (I index),  
C the previous populations are found in M0 and M1 etc.   
C  
C Level 1 Generation Rate   
C G1 = I*sigma*N*dt, the number of molecules leaving 1 in the time step           
C                 
 G1=M0(J,K)*XS0*G                         
c Level 1 Relaxation Rate                   
 R1=M1(J,K)*dt/T1                         
C Check to make sure the populations do not drop below zero         
 IF((G1-R1).GT.M0(J,K)) GO TO 110  
C Otherwise store the population for the next iteration in N0(r(J),z(K))          
 N0(J,K)=M0(J,K)+R1-G1 
 GO TO 120 
110     N0(J,K)=0 
**** Level 1************************************************************** 
c Level 2 Generation Rate is set to zero for a three level model      
120     G2=0 
C 120     G2=M1(J,K)*XS1*G                         
c level 2  Relaxation Rate, set to zero here for the 3 level model   
 R2=0 
C        R2=M2(J,K)*dt/T2                         
C Check to make sure the populations do not drop below zero                                   
 IF((G2+R1-G1-R2).GT.M1(J,K)) GO TO 130 
 N1(J,K)=M1(J,K)+G1+R2-G2-R1 
 GO TO 140 
130     N1(J,K)=0 
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**** Level 2************************************************************** 
140     continue  
C Level 3 Generation Rate       
C       G3=M2(J,K)*XS2*G                         
C        R3=M3(J,K)*dt/T3                         
Cc Level 3  Relaxation Rate 
C        IF((G3+R2-G2-R3).GT.M2(J,K)) GO TO 150 
C        N2(J,K)=M2(J,K)+G2+R3-G3-R2 
C        GO TO 160 
C150     N2(J,K)=0 
**** Level 3************************************************************** 
C160     IF((R3-G3).GT.M3(J,K)) GO TO 170 
C        N3(J,K)=M3(J,K)+G3-R3 
C        GO TO 180 
C170     N3(J,K)=0 
************************************************************************** 
C Compute the absorbance in the current cell 
180     ABS=(XS0*N0(J,K)+XS1*N1(J,K))*dz 
c       WRITE(6,1500) N0(J,K),N1(J,K) 
 GO TO 290 
**** Level 0************************************************************** 
C The initial iteration starts here  
c Level 1 Generation Rate   
200     G1=N0(J,K)*XS0*G                         
c Level 1  Relaxation Rate       
 R1=N1(J,K)*dt/T1                         
C Do not let the population fall below zero         
 IF((G1-R1).GT.N0(J,K)) GO TO 210  
C Otherwise store the population for the next iteration in M0(r(J),z(K))         
 M0(J,K)=N0(J,K)+R1-G1 
 GO TO 220 
210     M0(J,K)=0 
**** Level 1************************************************************** 
C Level 1, the first excited state, is depleted by pumping to state 2 
c The Level 2 Generation Rate is set to zero for 3 level model  
220     G2=0 
c220     G2=N1(J,K)*XS1*G                         
c level 2  Relaxation Rate, set to zero for 3 level model    
 R2=0 
C        R2=N2(J,K)*dt/T2                         
C Make sure the population stays above zero          
 IF((G2+R1-G1-R2).GT.N1(J,K)) GO TO 230 
C Compute the population of state 1         
 M1(J,K)=N1(J,K)+G1+R2-G2-R1 
 GO TO 240 
230     M1(J,K)=0 
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**** Level 2************************************************************** 
240     Continue 
C        G3=N2(J,K)*XS2*G                         
C Level 3 Generation Rate 
C        R3=N3(J,K)*dt/T3                         
C Level 3  Relaxation Rate 
C        IF((G3+R2-G2-R3).GT.N2(J,K)) GO TO 250 
C        M2(J,K)=N2(J,K)+G2+R3-G3-R2 
C        GO TO 260 
C250     M2(J,K)=0 
**** Level 3************************************************************** 
C260     IF((R3-G3).GT.N3(J,K)) GO TO 270 
C        M3(J,K)=N3(J,K)+G3-R3 
C        GO TO 280 
C270     M3(J,K)=0 
************************************************************************** 
C ABS is the absorbance= alpha*dz of the current radial cell 
280     ABS=(XS0*M0(J,K)+XS1*M1(J,K))*dz 
 Msum=M0(J,K)+M1(J,K) 
c WRITE(6,*) Msum 
C ****This checks the number of molecules. revised for floating compare        
 IF(Msum.GT.(1.02*N)) GO TO 281  
 IF(Msum.LT.(0.98*N)) GO TO 281             
 GO TO 290   
281     write (6,1301) ((N-Msum)/N)                  
c  If the molecules count is off Set error flag and exit         
 M_flag=1 
 go to 9123 
C The intensity in this cell, Irzt, is reduced by the absorbance 
290     Irzt=Irzt*(1-ABS) 
C The incident intensity for this cell is reduced by the abs         
 Iabs=Iabs*EXP(-ABS) 
300     CONTINUE 
****End Z Integration***************************************************** 
 
C **** The area of the current radial cell  = 2*pi*r*dr         
 da=2*pi*y*dr   
C  Prot sums the incident intensity*area        
c       It is the Incident Power (J/sec) on the current cell             
 Prot=Prot+Irot*da                
C  Prlt starts as zero, it sums the transmitted  intensity*area     
c It is the transmitted Power (J/sec) during the  Radial Integration        
 Prlt=Prlt+Irzt*da                
C Pj is a second calculation of the transmitted powerduring the radial integration 
 Pj=Pj+Iabs*da                    
C       TRANSMISSION OF the J-TH RADIAL COMPONENT is = Prlt/Prot 
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C        it is also = Pj/Prot 
C**** Adjust the radial integration differential element size          
C       This section trys to keep the incident power about constant  
C         
 IF(Y .LT. (0.11*R0)) THEN 
     dr = .05*R0 
   ELSE IF(Y .LT. (1.49*R0)) THEN 
     dr = .025*R0 
   ELSE   
     dr= INC_DR*INC_DR*.05*R0 
     INC_DR=INC_DR+1 
 ENDIF 
C **** Increment the radius by dr         
 y=y+dr 
400     CONTINUE 
****End Radial Integration************************************************ 
C  E_INC sums the total incident energy over time          
 E_INC=E_INC+Prot*dt              
c E_TRANS sums the total transmitted  energy over time      
 E_TRANS=E_TRANS+Prlt*dt           
c  E_t sums the total transmitted  energy computed from absorbances over time      
 Et=Et+Pj*dt 
C       write (*,*) ' ENERGY--TRANS=',E_TRANS,' INC=',E_INC,' et=',et 
C       write (*,*) ' TIME=',t,' TRANS=',E_TRANS/E_INC,' t(exp)=',Et/E_inc 
 t=t+dt 
 IF (t.LE.(2.5*Tp)) GO TO 20 
*****End Time Integration************************************************* 
C Compute the total transmission for this inncident energy using the two methods         
 TRANS(II)=E_TRANS/E_INC 
 TRexp(II)=Et/E_inc 
 write (1,1302) II,EIN(II)/(1-R_SAMPLE),TRANS(II),REFL*TRANS(II)           
 write (6,1302) II,EIN(II)/(1-R_SAMPLE),TRANS(II),REFL*TRANS(II) 
 E0=E0*dE 
600     CONTINUE 
 go to 99 
C*** LEVEL POPULATION for each level versus time is *NOT* written to file 'tmp.dat'. 
9123    If(M_flag.EQ.1)  write (1,1301) ((N-Msum)/N)    
 DO 700 I=1,IIN 
c       
C        WRITE(1,1400) I0(I)/(1-R_SAMPLE),REFL*TRANS(I) 
 WRITE(2,1302) I,EIN(I),TRANS(I),TRexp(I) 
700     CONTINUE 
 CLOSE(1) 
 CLOSE(2) 
 write (*,*) 'OUTPUT FILES:TMP.DAT (REFLECTION CORR) & TEXP.DAT' 
1100    FORMAT (' ','MOLARITY=',E9.2,' ALPHA=',E9.2,' Refl= ', E9.2) 
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1200    FORMAT (' ','XS0=',E9.2,2X,' XS1=',E9.2,2X,' Trans=',E9.2)        
1300    FORMAT (' ','T1=',E9.2,2X,' T2=',E9.2,2X,' T3=',E9.2) 
1301    FORMAT (' ','Molecule count diverging, Ratio=',E9.2)  
1302    FORMAT (I6,E10.3,2F10.5) 
1400    FORMAT (E10.3,2X,F10.5) 
1500    FORMAT (5(E10.4,2X)) 
1600    FORMAT ('N=',E9.2,2X,'1/cm^3, abs=',E9.2,2X,'T=',F10.5) 
 END 
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Appendix B: MathCAD Mode-Finding Program 
 
λ .532 a 1.5 n1 1.4860 n2 1.482 neff n2 n2 0.00001, n1..

k1 2 n1. π

λ
. k2 2 n2. π

λ
.

β neff( ) 2 neff. π

λ
.

u neff( ) k12 β neff( )( )2 w neff( ) β neff( )2 k22

x neff( ) u neff( ) a. y neff( ) w neff( ) a.

c1 neff( ) 1 u neff( ). Jn 1 x neff( ),( )
J0 x neff( )( )

. c2 neff( ) 1 w neff( ).( ) Kn 1 y neff( ),( )
K0 y neff( )( )

.

f neff( ) c1 neff( ) c2 neff( )

=

c1 neff( )

c2 neff( )

neff
1.4815 1.482 1.4825 1.483 1.4835 1.484 1.4845 1.485 1.4855 1.486

10

5

0

5

10

V n1 n2,( ) 2 π
a n1 2 n2 2.

λ
.

V n1 n2,( ) 1.93=  

soln root f neff( ) neff,( )soln root f neff( ) neff,( )

solnsoln
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